Exact Bayesian inference by symbolic disintegration
نویسندگان
چکیده
منابع مشابه
Symbolic Bayesian Inference
Bayesian inference, of posterior knowledge based on prior knowledge and observed evidence, is typically implemented by applying Bayes’s theorem, solving an equation in which the posterior multiplied by the probability of an observation equals a joint probability. But when we observe a value of a continuous variable, the observation usually has probability zero, and Bayes’s theorem says only tha...
متن کاملPSI: Exact Symbolic Inference for Probabilistic Programs
Probabilistic inference is a key mechanism for reasoning about probabilistic programs. Since exact inference is theoretically expensive, most probabilistic inference systems today have adopted approximate inference techniques, which trade precision for better performance (but often without guarantees). As a result, while desirable for its ultimate precision, the practical effectiveness of exact...
متن کاملExact Sampling for Bayesian Inference : Unbounded
Propp and Wilson 10, 11] described a protocol called coupling from the past (CFTP) for exact sampling from the steady-state distribution of a Markov chain Monte Carlo (MCMC) process. In it a past time is identiied from which the paths of coupled Markov chains starting at every possible state would have coalesced into a single value by the present time; this value is then a sample from the stead...
متن کاملExact Bayesian inference via data augmentation
Data augmentation is a common tool in Bayesian statistics, especially in the application of MCMC. Data augmentation is used where direct computation of the posterior density, π(θ |x), of the parameters θ , given the observed data x, is not possible. We show that for a range of problems, it is possible to augment the data by y, such that, π(θ |x,y) is known, and π(y|x) can easily be computed. In...
متن کاملExact Bayesian inference for the Bingham distribution
This paper is concerned with making Bayesian inference from data that are assumed to be drawn from a Bingham distribution. A barrier to the Bayesian approach is the parameter-dependent normalising constant of the Bingham distribution, which, even when it can be evaluated or accurately approximated, would have to be calculated at each iteration of an MCMC scheme, thereby greatly increasing the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM SIGPLAN Notices
سال: 2017
ISSN: 0362-1340,1558-1160
DOI: 10.1145/3093333.3009852